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A Fast Computational Technique for Accurate
Permittivity Determination Using
Transmission Line Methods

LEO P. LIGTHART

Abstract —A fast analytical method is given for determining permittivity
characteristics at microwave frequencies. The experimental setup uses a
single-moded cylindrical waveguide filled with dielectric and followed by a
load or by a moving short. In this way, transmission-reflection and
short-circuited line methods are compared. By including the uncertainties
in length and in the reflection and transmission parameters, the permittivity
uncertainty region is determined. It is shown that for optimum accuracy of
the permittivity, specific lengths in combination with a moving short are
needed.

1. INTRODUCTION

HE MOST ACCURATE determination of the per-

mittivity of dielectrics at high frequencies can be
obtained by using high @ resonant circuits. The main
disadvantages of this method are that it can be applied
only in a narrow frequency range, and that it is necessary
to design the resonator. Permittivity measurements over a
wide range of frequencies can be done, with reduced accu-
racy, when transmission line methods are used. A homoge-
neous dielectric with specific sample length is positioned in
the terminated transmission line, and the permittivity can
be derived from the measured transmission and reflection
coefficient. In the case of finite measurement uncertainties,
Stuchly and Matuszewski [1] found a considerable permit-
tivity uncertainty. This uncertainty can be reduced by
using the mutual relationship between the scattering coeffi-
cients. The method described here takes this relationship
into account, and gives optimal results for a transmission
line setup as found via the uncertainty analysis (Section
III). The advantages of the present method are: a) the
computation times required are small (a few milliseconds
per permittivity uncertainty region); and b) the analytical
expressions allow an optimization of the measurement
configuration.

The disadvantages are: a) the limitation of small mea-
surement uncertainty regions; and b) the complicated anal-
ysis.

This method is based on small measurement uncertain-
ties and a single-moded cylindrical waveguide of specific
length filled with dielectric and terminated with both a
load and a moving short. For a set of frequencies, the
scattering parameters at the waveguide reference planes are
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measured with sufficient accuracy by a slotted line, or by a
calibrated network analyzer (type HP 8542B) at different
positions of the moving short. For the use of the moving
short in this measurement technique, one is referred to
Deschamps [2]. The coupled scattering coefficients and
their mutual uncertainties are calculated from these mea-
surements. The computations for the scattering coefficients
and the permittivity, including their uncertainties, can be
performed within a negligible computing time by using the
analytical expressions derived in Sections II and III.

It is claimed that this method is useful for accurate
determination of the permittivity over a wide range of the
frequency, the dielectric constant, and the loss factor. This
permittivity measuring technique fills up the gap between
the existing transmission-line and resonator-measuring
techniques. Further, it allows a reconsideration of the
existing methods in view of the possible known inaccu-
racies. The computer programs are simple and can be run
on a 16-K minicomputer.

II. THE MUTUAL DEPENDENCIES OF THE SCATTERING
COEFFICIENTS AND THE PERMITTIVITY

In this section, we derive, under very strict model as-
sumptions, two independent equations, both of which give
the permittivity as a function of the two measured scatter-
ing coefficients. Starting from a given uncertainty limit of
one of the scattering coefficients, we compute the accom-
panying scattering coefficient and vice versa. Only those
scattering coefficients within uncertainty limits are used to
compute the permittivity. For this purpose, the average
values and the extreme variations of the scattering coeffi-
cients are selected.

Attention is given to model imperfections, and at the
end of this section the measuring method with the moving
short is shown to obtain the best measurement accuracy.

To derive the theory, the cross section of a cyclindrical
single-moded waveguide is shown in Fig. 1 filled over a
length / with a dielectric having unknown permittivity e.
The propagation constants are y, in the empty waveguide
and vy in the filled waveguide, and depend on the mode
number m, the waveguide dimensions, the radian frequency
w, and the dielectric constant # = Ve.

We know that
Yo = ng - k% (1)
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reference plane 1

Cross section of waveguide filled with dielectric.

reference plane 2

Fig. 1.

where k= wave number at the cutoff frequency, depend-
ing on m and the waveguide dimension (e.g., k, = 7/a for
the TE,, mode where a = width of the waveguide and
k.= 0 for the TEM mode); and k, = wave number in free
space = wyeyp, where g, and p, are the permittivity and

permeability in free space, respectively; and that

y=yk2—(nky)". (2)

The scattering matrix coefficients at the reference planes
of this symmetrical two-port become [1]

Sn:Szz:“P(l_wz)/(l_Pzwz) (3)
Sy =S =w(l=p*)/(1-p*w?) (4)
where
p=(/1%-1/(v/%+1)
and

w=exp(—v/).
From (3) and (4), the reflection coefficient p and the
propagation factor w can be derived as follows:

—(1+ 83 -52 +\/»+S

p= 28,

- 83)" -ash

7
1- S} + 85 _\/(1_5121 +87) —487
28,

(6)

W=

which means that
(‘Y/Yo)2 = {(1 - S11)2

v’ = {(1 - Szl)z
where v = tgh(y//2).

Equations (7) and (8) relate the propagation constant
and the propagation factor to the scattering coefficients.
To determine y, we have two different equations, namely
(7) and (8), in which vy is related to the scattering coeffi-
cients. With the exact scattering coefficients S|, and S,,
and a given length /, we are able to compute the permittiv-
ity by using either (7) or (8). This means that by elimina-
tion of v, a mutual dependency A(S,,, S;;) between S|, and
S,, can be derived

1— 82+ S3
AYS

Y= Yol\/{(l - Sn)z‘ 5221>/{(1 + Sn)z— SZZI}

9

-$2) (7
—5121} (8)

- 5221}/{(1+ Sn)z
—S121}/{(1+ 521)2

h(S)1,8) = —2cosh(y/)=0
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Fig. 2. Uncertainty regions around §), and Sj;. S“ a» Sit. 6> Si1.> and
S11, 4 are the uncertainty limits for Sy, and Sy, Sql b SZI .. and So1.d
for Sy,

where the positive root can be taken in y/ because in (9)
only cosh(y/) is present. Consequently, not only the mea-
surement accuracy, but also the relationship just calculated
between S, and S,,, influences the uncertainties. This can
be proved by analyzing the limits in the uncertainty regions
which are due to measurement inaccuracies. The uncer-
tainty limits Sy, ,, Sy1 5, S)y,.» and Sy, , around the mea-
sured S, and those of So1,a0 S21,50 S21,0» and S, , around
the measured $,, can be visualized as in Fig. 2. The
different limits are substituted successively in (9) to com-
pute the corresponding scattering coefficient. The proce-
dure is as follows.

Starting from S}, = §,, ,, we compute the corresponding
S5, by assuming (see Fig. 2)

S5 =5+ 6%
¥l =1 {(1= S11. P = (S A1+ 8, ) -

(10)
(5.7}
(11)

To find 85}, we approximate (9) by the first terms of the
Taylor expansion

0=(1+8;Ia_§_
21

)'h(sn,a’gzl)

— 2 J—
89 — 1_(S11,a)2+(s21) — 28, cosh(v4i/)
21 VRS
— 1—(S +
~25, + ( 11,a_) (SZI)
21
d
+25,, sinh(y5,7) (/) (12)
21
o) _ { 1
= = Y
ISy =8y, ) (Szl)

— 1 <
(1+5n0) 2—(521)2} S (1)

We follow the same procedure for S\, =§,, ,, Sy, ., and
S11 4 to compute 82, 85;, and 8%, respectively, while for
=Sat,a> 21,0 S21,» a0d Sy ; we compute 87, 87, 85,

and 8¢, respecuvely, by a set of equations as listed below
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for 8¢,

Sll,a =8, + 6,

(14)
Ylall= Yol\/{(l - §ll)2_(S2l,a)2}/{(l + §11)2_(S21,a)2}

(15)
— \2

59 = 1"‘(311) +(S21,a)2_2S21 aCOSh(Ylall) 16

2S11+2S21 as1nh(yul) i

as,,

aww)=_w% 1-5),
881, ( 11) (S21 a)
1+ 5,
w1 O
(1+Sn) —(S21,a)

To get a y region solution, the S|, region determined by
the four §,; points needs an area in common with the
uncertainty region of S;,, and can therefore be char-
acterized by at least three points and maximally eight
points. At the same time, the S,, region formed by the four
8, points needs an area in common with the uncertainty
region of S;, and can also be characterized by at least three
points and maximally eight points. If the measurement
accuracy is worse than specified, or the model assumptions
are incorrect, it is possible that no common area is found,
rendering an accurate determination of y impossible. From
the common area with minimally three and maximally
eight extrema in S|, the corresponding S,; values have to
be found, and likewise with the extrema in S,;, the corre-
sponding S;; values. These extrema are used to compute
the average value S? with corresponding S,,, and the
average S2 with corresponding S,,. From the same data,

the differences dS®, dS,,, dS,;, and dSZ are derived as
follows:

dS{ = extrema in S|, within common S}, area— S&’
d§21 = corresponding S,, — 5'21

dS3y = extrema in S,, within common S, area— S
Sir- (18)

The combinations S, §,,, and §,,, S& are used to
compute y twice by substituting these S parameters into
(8). The differences in (18) are then used to compute the
differences in y according to the theory given in Section
IIL. If the four areas formed by these differences in y do
not contain the difference in the two y solutions, this
indicates a nonlinearity in the method.

To study the model imperfections we distinguish: a) a
length inaccuracy which can be taken into account as in
Section III; b) a displacement of the reference planes,
resulting in differences in the arguments of the measured
S}, and S,, which can be taken into account by averaging
these arguments; ¢) an air gap between the sample and the
waveguide walls; d) the inhomogeneities within the sample;
¢) the excitation and propagation of higher order modes

dS,, = corresponding S, —
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within the sample; and f) the nonplanar ends of the sample
at the reference planes.

The last four model imperfections are taken into account
by the enlargements of the uncertainty regions of Sh
and/or S,, with the measured differences between S, and
Si2, and between modulus (§;,) and modulus (S,). It is
clear that, for increased measurement accuracy, the com-
mon S,; and S, areas become smaller so that stronger
model conditions have to be fulfilled. The measurement
accuracy in §); and S,;, when measured as transmission
and reflection coefficients with the HP 8542 B calibrated
network analyzer, is sufficient for rather lossy materials if
only (7) is used [1]. For low-loss materials with optimum
results, the approach formulated in (7)-(18) has to be used.
Examples of experimental results obtained with a wave-
guide slotted line and with the calibrated network analyzer
are given in Section IV.

The random errors in the measurements are reduced
with the reflection coefficient measurement method as
described by Deschamps [2]. The method uses a load and a
moving short behind the sample of Fig. 1 and was origi-
nally used for permittivity measurements by Altschuler [3].

When accurate scattering coefficient measurements of
Si1s Sy, Sy, and S|, are desired, eight or even sixteen
short-circuit positions spaced over half a wavelength can
be used. The appeal of this method over the transmission
and reflection method is that the mutual dependencies
between the scattering coefficients are implicitly taken into
account. For the ‘calculation of the scattering coefficients,
one is referred to [2].

III. THE OPTIMAL MEASUREMENT CONFIGURATION

FOR COMPUTING THE PERMITTIVITY

In Section II, we have proved that there exists a mutual
dependency between S;; and S,;. If we assume that §,; is a
function of Sy, the error de;; in € due to a sample length
difference 8/ and to a difference dS,, (this can be dS;y or
dS,;) becomes

de de

de) = —5; 81+

a1 % F a5 B

fore=¢(S,;,1) (19)

and for S;, as a function of S,
de de

d€21=-(;)—l'81+5§2—1

By using (1)-(4), (6), (7), and (9) we derive

-dS,, fore=e(S,,1). (20)

de _2( vy 2
al l(ko) 1)
ji=%lﬁzl (1-p*w?)’
AN kol 1-p% 4pw2yl+ (1+ p*w?)(1— w?)
(22)
sl + et 23)
95, kol 1—0* p(1—w2)+(1+ p?*w?) vl

From (21) we see that for length wuncertainties
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Fig. 3. The real part of (21) as a function of ¢ for different lengths and
k./ky=0.59.
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Fig. 4. The imaginary part of (21) as a function of ¢” for different
lengths.

Re(de /dl) = real part of de /J! depends on Re(e) =¢’ and
becomes minimal for maximum length and for measure-
ment wavelengths near cutoff. Im( de / d/) = imaginary part
of de /3l s a function of Im(e) = ", and becomes minimal
for maximum length, but does not depend on the empty
transmission line cutoff wavelength. For that reason, the
real and imaginary parts of (21) are shown in Figs. 3 and 4.

To analyze the influences of scattering coefficient uncer-
tainties for different sample lengths, first the limitation of
dielectric materials without losses is considered. This means

¢’=0=1Im(p)=Re(y)=0. (24)

In that case, the absolute values of (22) and (23) have
been visualized in Figs. 5 and 6, e.g., for ¢/ =8.79. The
reason why we take the absolute values is because dS;, and
ds,, have complex values around S7 with corresponding
S,,, or around S with corresponding §,,. Contrary to the
length uncertainty, we therefore assume equal influences
on de’ and de” due to uncertainties in dS;, and dS,,. From
Figs. 5 and 6, we conclude that for optimum computation
of the permittivity, p has to be as large as possible and

Im(y/)=kw, k=0,1,2--- (25)
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where larger k£ gives more accurate €' values but at the
same time implies more stringent considerations concern-
ing the model assumptions. Increasing p can be reached by
using the empty waveguide near cutoff. The most attractive
feature of the method with the automatic network analyzer,
however, is broad-bandedness. This means that the near
cutoff waveguide option would not be generally available.

A second advantage of the sample lengths given by (25)
is that for this idealized case |S|,| becomes 0. This means
that |dS,|, and also |dS;,|, because of the mutual dependen-
cy between S|, and S,,, become minimal.

If losses are taken into account, €’ = 0, and so Re(y) =«
= 0. Because |S;,| = 0, and thus |dS,] increases when com-
pared to the lossless case, the permittivity results become
less accurate for optimum sample lengths given by (25).

From (22) and (23) we see that for lossy materials the S,,
measurements largely determine the accuracy in the per-
mittivity results for sample lengths very large in relation to
the wavelength because only the minima of (23) and |S,,|
decrease with increasing sample length. This is in agree-
ment with [4], where the influence of the sample length for
high ¢ ferroelectric materials in a TE measurement config-



LIGTHART: TECHNIQUE FOR ACCURATE PERMITTIVITY DETERMINATION

uration has been studied by using the amplitude and phase
of S,; only. For an arbitrary sample length, both (22) and
(23) have to be used to achieve the most accurate results.

IV. REsuULTS

Firstly, we show the influence on the accuracy of e = ¢’ +
Jje” measurements at frequencies near the cutoff frequency
of the empty waveguide. We take the example of the TE,
mode propagating in a rectangular waveguide (inner di-
mensions 25.8 mm X 51.6 mm), and homogeneously filled
over a length L =892 mm with aluminum oxide corre-
sponding to a quarter wavelength inside this medium at a
frequency of 3 GHz. The scattering coefficients S;, and S,
and the uncertainty limits as suggested by the manufac-
turer of the HP calibrated network analyzer type HP 8542
B become

f=3GHz, length=28.92 mm+0 mm
Re(S;;) =—0.983+0.030, Im(S;;)=0+0.030
1S,,]=0.17740.003, arg(S,,) = —1.5740.040.

The uncertainty limits are checked by turning the sample
so that S,, and §,, are measured, and further by computing
8,, ((12)), under the assumption of an infinitesimal uncer-
tainty region of S,;, and by computing 8,, ((16)), under the
assumption of an infinitesimal uncertainty region of S,,. If
the differences between S,; and S, or between S, and S),,
or if 8,, or 8, are larger than the HP uncertainty limits due
to incorrect model considerations, including length uncer-
tainties, the uncertainty region has to be enlarged. By using
(10)—(17), and (1), (2), and (18)-(23), the common ¢ area
has been calculated. In Fig. 7 the common ¢ area has been
drawn with solid lines; for comparison, the broken lines
indicate the common ¢ area as obtained in a TEM config-
uration with the same electrical length of the sample.

For a sample length of 17.83 mm, corresponding to the
optimum electrical length of half a wavelength, the scatter-
ing coefficients with their uncertainties become

f=3GHz, length=17.83 mm+0mm
Re(S,;,) =—0.0894£0.003, Im(S,;)=0.001+0.003
|Sy,]=0.91+£0.017, arg(S,,)=3.142+0.027.

For this optimum length, the common e area is shown in
Fig. 8 for the TE,, mode and is compared to the TEM
mode.

From Figs. 7 and 8, we see the advantage of using the
TE,, mode near cutoff for sample lengths which satisfy
(25).

The method with the moving short has been used for the
¢ determination of plexiglass in the case of nonoptimum
sample length. From sixteen measurements with the mov-
ing short, and one S,; measurement with a load, we have
derived from Deschamps [2] the scattering coefficients with
their uncertainties for

f=9.814 GHz, length =74.5 mm+0 mm.
Re(S,,) =—0.142£0.019, Im(S,;)=—0.186+0.019
|S,,|=0.8814+0.021, arg(S,,)=2.696+0.031.
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Fig. 7. Uncertainty limits of ¢, predicted from uncertainty limits of Sy,
and S,,, as obtained for a quarter-wave sample in a TEM transmission
line and a TE,,; waveguide near cutoff. (The lower boundary of ¢’ has
not been shown because it corresponds with active materials.)
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Fig. 8. Uncertainty limits of ¢, predicted from uncertainty limits of Sy,
and S,,, as obtained for half a wavelength sample in a TEM transmis-
sion line and a TE,, waveguide near cutoff.
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Fig. 9. Uncertainty limits of ¢ predicted from computed uncertainty
limits of S;, Sy; (solid lines) [2], and sixteen computed S,,, S,, values
(dots).

The results (solid lines) are given in Fig. 9.
If we use the sixteen measurements separately to com-
pute S, via

(I‘Ié - Sll)(l - Sllrk)
I‘k

2
SZl—

where T, = complex reflection coefficient of the moving
short at the output reference plane, and I’ = measured
reflection coefficient at the input reference plane, we are
able to compute sixteen different €’s ((8)), indicated by
dots in Fig. 9, resulting in

¢ = average in ¢ = 2,5793, S,. = spread in ¢’ = 0.0020
é” = average in ¢” = —0.0156, S, = spread in €'’ = 0.0006.

Comparison between the dots and the common ¢ area in
Fig. 9 indicates an accuracy in €’ and €” better than 0.001.
The fact that the dots follow a smooth contour rather than
scatter randomly suggests that there is some systematic
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error in S}, and S,,. Minimizing the area of the contour by
varying S, within the uncertainty limits can further im-
prove the € accuracy.

V. CONCLUSIONS

The analytical approach to computing ¢ from reflection
and/or transmission coefficients as derived in Section II
has the advantage that the programming is simple and can
be performed within a negligible computing time in the
minicomputer which is part of the automatic and calibrated
network analyzer. In Section 111, the € uncertainty region is
related to the sample length uncertainty, and to the scatter-
ing coefficient uncertainties. For low-loss materials, accu-
rate € results are obtained by measuring S;;, for long
sample lengths corresponding to an integer number times
half a wavelength in the medium, especially when a rectan-
gular waveguide near cutoff is used. However, the longer
the sample lengths are, the more sensitive the ¢ computa-
tions are to failures in the model. For higher losses, the
influence of S,, becomes more important and both minima
of (22) and (23) have to be used to get the most accurate
results. Under the assumption of sufficient measurement
sensitivity, the method with the moving short has the
advantage that only reflection coefficients have to be mea-
sured. From these measurements, the scattering coefficients
and their uncertainties are derived. A variant makes use of
the relation between the scattering coefficients via the
measured reflection coefficients. The different e results
found in this manner yield comparable results and can be
analyzed statistically.
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