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A Fast Computational Technique for Accurate
Permittivity Determination Using

Transmission Line Methods

LEO P. LIGTHART

Abstract—A fast analytical method is given for determining perrnittivity

characteristics at microwave frequencies. The experimental setup uses a

single-moded cyfindrfcaf waveguide filled with dielectric and followed by a

load or by a moving short. In this way, transmission-reflection and

short-circuited line methods are compared. By includhrg the uncertainties

in length and in the reflection and transmission parameters, the permittfvity

uncertainty region is determined. It is shown that for optimum accuracy of

the pernrittfvity, specific lengths in combination with a moving short are

needed.

I. INTRODUCTION

T HE MOST ACCURATE determination of the per-

rnittivity of dielectrics at high frequencies can be

obtained by using high Q resonant circuits. The main

disadvantages of this method are that it can be applied

only in a narrow frequency range, and that it is necessary

to design the resonator. Permittivity measurements over a

wide range of frequencies can be done, with reduced accu-

racy, when transmission line methods are used. A homoge-

neous dielectric with specific sample length is positioned in

the terminated transmission line, and the permittivity can

be derived from the measured transmission and reflection

coefficient. In the case of finite measurement uncertainties,

Stuchly and Matuszewski [1] found a considerable permit-

tivity uncertainty. This uncertainty can be reduced by

using the mutual relationship between the scattering coeffi-

cients. The method described here takes this relationship

into account, and gives optimal results for a transmission

line setup as found via the uncertainty analysis (Section

III). The advantages of the present method are: a) the

computation times required are small (a few milliseconds

per permittivity uncertainty region); and b) the analytical

expressions allow an optimization of the measurement

configuration.

The disadvantages are: a) the limitation of small mea-

surement uncertain y regions; and b) the complicated anal-

ysis.

This method is based on small measurement uncertain-

ties and a single-moded cylindrical waveguide of specific

length filled with dielectric and terminated with both a

load and a moving short. For a set of frequencies, the

scattering parameters at the waveguide reference planes are
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measured with sufficient accuracy by a slotted line, or by a

calibrated network analyzer (type HP 8542B) at different

positions of the moving short. For the use of the moving

short in this measurement technique, one is referred to

Deschamps [2]. The coupled scattering coefficients and

their mutual uncertainties are calculated from these mea-

surements. The computations for the scattering coefficients

and the permittivity, including their uncertainties, can be

performed within a negligible computing time by using the

analytical expressims derived in Sections II and III.

It is claimed that this method is useful for accurate

determination of the permittivity over a wide range of the

frequency, the dielectric constant, and the loss factor. This

permittivity measuring technique fills up the gap between

the existing transmission-line and resonator-measuring

techniques. Further, it allows a reconsideration of the

existing methods in view of the possible known inaccu-

racies. The computer programs are simple and can be run

on a 16-K minicomputer.

II. THE MUTUAL DEPENDENCIES OF THE SCATTERING

COEFFICIENTS AND THE PERMITTIVITY

In this section, we derive, under very strict model as-

sumptions, two independent equations, both of which give

the permittivity as a function of the two measured scatter-

ing coefficients. Starting from a given uncertainty limit of

one of the scattering coefficients, we compute the accom-

panying scattering coefficient and vice versa. Only those

scattering coefficients within uncertainty limits are used to

compute the permittivity. For this purpose, the average

values and the extreme variations of the scattering coeffi-

cients are selected.

Attention is given to model imperfections, and at the

end of this section the measuring method with the moving

short is shown to obtain the best measurement accuracy.

To derive the theory, the cross section of a cylindrical

single-moded waveguide is shown in Fig. 1 filled over a

length 1 with a dielectric having unknown permittivity c.

The propagation constants are yO in the empty waveguide

and y in the filled waveguide, and depend on the mode

number m, the waveguide dimensions, the radian frequency

u, and the dielectric constant n’ = &.

We know that

F’Yo= k,–ko (1)
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reference plane 1 reference plane 2
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Fig. 1. Cross section of waveguide filled with dielectric.

where kC = wave number at the cutoff frequency, depend-

ing on m and the waveguide dimension (e.g., kC = r/a for

the TEO1 mode where a = width of the waveguide and

kC = O for the TEM mode); and kO = wave number in free

space = o= where E. and PO are the permittivity and

permeability in free space, respectively; and that

y=@: -(nko)2. (2)

The scattering matrix coefficients at the reference planes

of this symmetrical two-port become [1]

sl, =s22=–p(l –w2)/(1–p*l’v’) (3)

s2, =s,2=w(l –p’)/(1–p’w2) (4)

where

P = (Y/Yo – 1)/(Y/Yo + 1)

and

w=exp(–yl).

From (3) and (4), the reflection coefficient p and the

propagation factor w can be derived as follows:

-(l+s;, -s; )i-/(l+s~, -s;,) 2-4s:,
p=

2s,,
(5)

which means that

(Y/Yo)2= {(1- s,,)2-s:,}/{(1+ ~,,)2- ~:,} (7)

O*= {(1 – S21)2– Sfl}/{(l + S21)2– Sfl} (8)

where o = tgh(yl/2).

Equations (7) and (8) relate the propagation constant

and the propagation factor to the scattering coefficients.

To determine y, we have two different equations, namely

(7) and (8), in which y is related to the scattering coeffi-

cients. With the exact scattering coefficients S,, and S21

and a given length 1, we are able to compute the permittiv-
ity by using either (7) or (8). This means that by elimina-

tion of y, a mutual dependency h (S1,, S21) between S1~ and

S21 can be derived

1 – s:, + S;l
~(511,521)= s –2cosh(yl) = O

21

Yl=yol {(1–s,*)2– s;,}/{ (l+s,, )2–s; J

(9)

‘Re(S211

—
Fig. 2. Uncertainty regions around $1, and S21. S1,,., S11, b, SI I.,, and

S,l, d are the uncertainty limits for S1l and S21,.; S~l,b, S21,.. and S21,d

for %2,.

where the positive root can be taken in yl because in (9)

only cosh(yl) is present. Consequently, not only the mea-

surement accuracy, but also the relationship just calculated

between S1, and S21, influences the uncertainties. This can

be proved by analyzing the limits in the uncertainty regions

which are due to measurement inaccuracies. The uncer-

tainty knits S1~,~, S1~,~, S1,, ~, and S1~ ~ around the mea-

sured S1l and those of S21,~, S’l,b, S21,=, and S21,d around

the measured ~21 can be visualized as in Fig. 2. The

different limits are substituted successively in (9) to com-

pute the corresponding scattering coefficient. The proce-

dure is as follows.

Starting from S1~= S1~,~, we compute the corresponding

Sj by assuming (see Fig. 2)

S;l = S*, + 8;, (lo)

Y;,l=YOZ ((h%J2-(Sj,)2)/{ (l+s1,,a)2-(g, )2} .

(11)

To find ii;l, we approximate (9) by the first terms of the

Taylor expansion

1–(s1,,a)2+ (&,)2–2$lcosh(y;lz)
Sjl =

–2~2, +
l–(sll,. )2+(31)2

32,

+2 S21sinh(y~11) - (12)
21

~(Y$lz) = _y;,l

{

1

a~2,
(1-%.) 2-(s,)2

1

}
q. (13)

- (1+s,,,=)2-(s,)2

We follow the same procedure for S1~= S1~,~, S1,,~, and

511,~ to compute ~~1, ~~1, and 8il, respectively, whale for
S*, = S’,,o, szl,~, %,., and %,d we compute 8;1, 13~1,~fl
and i3~1, respectively, by a set of equations as listed below
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/yf~l=yJ {(1–s1,)2– (s2,,=)2)/{(1+s,, )2–(s,,,. )2)

(15)

l–(S,1)2+(s21, a)2–2s21,acosh(yflz)

sf, =
d(y:ll)

(16)

2F,1 +2 S21,asinh(y;lZ) or
11

C?(y:,l)

(

l–s,l
— .——.

W,, ‘:’1 (1- F,,)2-(S21,J2

1+s,,
+

(1+%)2 -(s2,,.)2 1

. (17)

To get a y region solution, the S1, region determined by

the four 81~ points needs an area in common with the

uncertain y region of S1~, and can therefore be char-

acterized by at least three points and maximally eight

points. At the same time, the S21 region formed by the four

~al points needs an area in common with the uncertainty

region of S21 and can also be characterized by at least three

points and maximally eight points. If the measurement

accuracy is worse than specified, or the model assumptions

are incorrect, it is possible that no common area is found,

rendering an accurate determination of y impossible. From

the common area with minimally three and maximally

eight extrema in S1,, the corresponding S2, values have to

be found, and likewise with the extrema in Szl, the corre-

sponding S1, values. These extrema are used to compute

the average value Sfl with corresponding S21, and the

average S~: with corresponding ~1,. From the same data,

the differences dSfl, d~l,, dj21, and dS~~ are derived as

follows:

dSfl = extrema in S1, within common S1, area – Sfl

d~21 = corresponding S21– $Tl

dS;: = extrema in Szl within common SZLarea – S$;

The combinations Sfl, ~21, and ~1,, S~~ are used to

compute y twice by substituting these S parameters into

(8). The differences in (18) are then used to compute the

differences in y according to the theory given in Section

III. If the four areas formed by these differences in y do

not contain the difference in the two y solutions, this

indicates a nonlinearity in the method.

To study the model imperfections we distinguish: a) a

length inaccuracy which can be taken into account as in

Section III; b) a displacement of the reference planes,

resulting in differences in the arguments of the measured

~1, and ~2z which can be taken into account by averaging

these arguments; c) an air gap between the sample and the

waveguide walls; d) the inhomogeneities within the sample;

e) the excitation and propagation of higher order modes

within the sample; and f) the nonplanar ends of the sample

at the reference planes.

The last four model imperfections are taken into account

by the ~nlargements of the uncertainty regions of ~1,

and/or S21 with the measured differences between ~21 and

~12, and between modulus (~1,) and modulus (~22). It is

clear that, for increased measurement accuracy, the com-

mon S1, and S21 areas become smaller so that stronger

model conditions have to be fulfilled, The measurement

accuracy in S1, and S21, when measured as transmission

and reflection coefficients with the HP 8542 B calibrated

network analyzer, is sufficient for rather lossy materials if

only (7) is used [1]. For low-loss materials with optimum

results, the approach formulated in (7)–( 18) has to be used.

Examples of experimental results obtained with a wave-

guide slotted line and with the calibrated network analyzer

are given in Section IV.

The random errors in the measurements are reduced

with the reflection coefficient measurement method as

described by Deschamps [2], The method uses a load and a

moving short behind the sample of Fig. 1 and was origi-

nally used for perrnittivity measurements by Altschuler [3].

When accurate scattering coefficient measurements of

S1,, SZ2, S21, and S12 are desired, eight or even sixteen

short-circuit positions spaced over half a wavelength can

be used, The appeal of this method over the transmission

and reflection method is that the mutual dependencies

between the scattering coefficients are implicitly taken into

account. For the ‘calculation of the scattering coefficients,

one is referred to [2].

HI. THE OPTIMAL MEASUREMENT CONFIGURATION

FOR COMPUTING THE PERMITTIVITY

In Section 11, we have proved that there exists a mutual

dependency between S1~ and S21. If we assume that S21 is a

function of S1,, the error d~,, in c due to a sample’ length

difference 81 and to a difference dS1, (this can be dSfl or

dS1, ) becomes

de =~ 81+ ik

11 al “ 8s,, “dS’” forc=c(S1,,l) (19)

and for S1, as a function of S21

dc =% al+ ae

2’ al “ 13S21“ ‘s21 ‘
forc=t(S21,1). (20)

By using (l)–(4), (6), (7), and (9) we derive

(21)

ik–() 21 (1-p%2)2

as,, ‘4 : l–pz 4pw2yl+ (l+pW)(l-w2)

(22)

(?E 2y21

()

(1-p2w2)2

8s2, = G ~
(23)

l–p’2 p(l–wz)+(l +pzwz)yl”

From (21) we see that for length uncertainties
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=lcm I&l I c, = 8.79

=2CUI

=4cm

=8cn

o

Fig. 3. The real part of (21) as a function of c’ for different lengths and
kC/ko = 0.59.
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Fig. 5. The modulus of (22) as a function of Im(y[) for different kc/ko.
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Fig. 6. The modulus of (23) as a function of Im(y/) for different kC/ko.

o 5 - 10
E“

Fig. 4. The imaginary part of (21) as a function of c“ for different
lengths.

Re( d~/dl) = real part of 6’(/81 depends on Re(c) = c’ and

becomes minimal for maximum length and for measure-

ment wavelengths near cutoff. Im( A / dl ) = imaginary part

of 13c/al is a function of Im(~ ) = c“, and becomes minimal

for maximum length, but does not depend on the empty

transmission line cutoff wavelength. For that reason, the

real and imaginary parts of(21 ) are shown in Figs. 3 and 4.

To analyze the influences of scattering coefficient uncer-

tainties for different sample lengths, first the limitation of

dielectric materials without losses is considered. This means

e “=()- Im(p)=Re(y)=O. (24)

In that case, the absolute values of (22) and (23) have

been visualized in Figs. 5 and 6, e.g., for c’= 8.79. The

reason why we take the absolute values is because dS1, and

tiSzl have complex vahtes around Sfl ~ith corresponding

Szl, or around S~~ with corresponding S1,. Contrary to the

length uncertainty, we therefore assume equal influences

on dc’ and dc” due to uncertainties in dS1, and dSzl. From

Figs. 5 and 6, we conclude that for optimum computation

of the permittivity, p has to be as large as possible and

Im(yl) = km, k=0,1,2 . . . (25)

where larger k gives more accurate d values but at the

same time implies more stringent considerations concern-

ing the model assumptions. Increasing p can be reached by

using the empty waveguide near cutoff. The most attractive

feature of the method with the automatic network analyzer,

however, is broad-bandedness. This means that the near

cutoff waveguide option would not be generally available.

A second advantage of the sample lengths given by (25)

is that for this idealized case ]Sl, I becomes O. This means

that IdS1 ~1,and also ldSzl 1,because of the mutual dependen-

cy between SI, and Szl, become minimal.

If losses are taken into account, ~“ * O, and so Re(y) = a

* O. Because IS1~I * O, and thus ldS1, ] increases when com-

pared to the lossless case, the permittivity results become

less accurate for optimum sample lengths given by (25).

From (22) and (23) we see that for lossy materials the Szl

measurements largely determine the accuracy in the per-

mittivity results for sample lengths very large in relation to

the wavelength because only the minima of (23) and ISZI I

decrease with increasing sample length. This is in agree-

ment with [4], where the influence of the sample length for

high d ferroelectric materials in a TE measurement config-
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uration has been studied by using the amplitude and phase -c,,

I

1.0 Aluminhm Oxide

of Szl only. For an arbitrary sample length, both (22) and

1<1...

‘o 1
made

– —... -TEMImde

(23) have to be used to achieve the most accurate results.

~%.,..
0.4 .< . . .

IV. RESULTS ,/ -.
, . ..

0.2

Firstly, we show the influence on the accuracy of c = c’ +
/ ‘..---
-.. . ,-. \

jc” measurements at frequencies near the cutoff frequency \l “85
8.3 8.75 9.0 9.25

of the empty waveguide. We take the example of the TEO1

mode propagating in a rectangular waveguide (inner di-

mensions 25.8 mm X51.6 mm), and homogeneously filled

over a length L = 8.92 mm with aluminum oxide corre-

sponding to a quarter wavelength inside this medium at a

frequency of 3 GHz. The scattering coefficients ~1, and &

and the uncertainty limits as suggested by the manufac-

turer of the HP calibrated network analyzer type HP 8542

B become

~= 3 GHz, length =8.92 mm+Omm

Re(S1l) = –0.983+0.030, Im(S1l) =0+0.030

c’

Fig. 7. Uncertainty limits of c, predicted from uncertainty limits of S,,

and S2,, as obtained for a quarter-wave sample in a TEM transmission
line and a TEn, waveguidenear cutoff. (The lower boundary of d’ has
not been show-nbeca~seit correspondswith active materials.)

I
Aluminim oxide

‘o 1
mode

-e “ ~._. -. -, —------
0.095 .

1 ----- mn mcde
! I

I

0.090
0.088 .

0.085 ~D~

p2,1=o.177*o.oo3, arg(s21) = – 1.57+0.040.
1

i i
0.080 i-, _._. -.-. -._._i

The uncertainty limits are checked by turning the sample
v)

so that Szz and S12 are measured, and further by computing 8.78 8.79 8.80

—

821 ((1 2)), under the assumption of an infinitesimal uncer-

tainty region of S1,, and by computing 8, ~ ((16)), under the

assumption of an infinitesimal uncertainty region of S21. If

the differences between ~1, and ~zz or between ~zl and &,

or if 8Z1or 8,, are larger than the HP uncertainty limits due

to incorrect model considerations, including length uncer-

tainties, the uncertainty region has to be enlarged. By using

(10)-(17), and (l), (2), and (18)-(23), the common c area

has been calculated. In Fig. 7 the common t area has been

drawn with solid lines; for comparison, the broken lines

indicate the common c area as obtained in a TEM config-

uration with the same electrical length of the sample.

For a sample length of 17.83 mm, corresponding to the

optimum electrical length of half a wavelength, the scatter-

ing coefficients with their uncertainties become

j= 3 GHz, length= 17.83 mm+o mm

Re(S,l) = –0.089Y0.003, Im(Sll) = 0.001 ~0.003

IS*,I = 0.91+0.017, arg(Szl) = 3.142 +0.027,

For this optimum length, the common c area is shown in

Fig. 8 for the TEOI mode and is compared to the TEM

mode.

From Figs. 7 and 8, we see the advantage of using the

TEOI mode near cutoff for sample lengths which satisfy

(25).

The method with the moving short has been used for the

( determination of plexiglass in the case of nonoptimum

sample length. From sixteen measurements with the mov-

ing short, and one S1, measurement with a load, we have
derived from Deschamps [2] the scattering coefficients with

their uncertainties for

E,

Fig. 8. Uncertainty limits of e, predicted from uncertainty limits of S1,
and S.,. as obtained for half a wavelength sanmle in a TEM transmis-

sion ~;e and a TEO1waveguidenear cu;off. ‘

II
Plexi-glass

~ = ;.+ j;,,

-E”

0.017

1 a.,. .. x .:!
0.015 ‘, .“

. .

0.013
t

Fig. 9. Uncertainty fimits of c predicted from computed uncertainty
limits of S1,, S21(solid lines) [2], and sixteencomputed S1,, S21values
(dots).

The results (solid lines) are given in Fig. 9.

If we use the sixteen measurements separately to com-

pute S2, via

s,, = (rj-s,,)(l-s,,r,)
2 rk

where r~ = complex reflection coefficient of the moving

short at the output reference plane, and r; = measured

reflection coefficient at the input reference plane, we are

able to compute sixteen different t‘s ((8)), indicated by

dots in Fig. 9, resulting in

c’= average in c’ = 2,5793, SC.= spread in e’ = 0.0020

i“ = average in C“ = – 0.0156, S,,, = spread in d’ = 0.0006.

f = 9.814 GHz, length = 74.5 mm~O mm. Comparison between the dots and the common c area in

Re(S1l) = –0.142*0.019, Im(S1l) = –0.186&0.019
Fig. 9 indicates an accuracy in C’ and C“ better than 0.001.

The fact that the dots follow a smooth contour rather than
ISZII= 0.881+0.021, arg(Szl) = 2.696&0.031. scatter randomly suggests that there is some systematic
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error in S1~ and S21. Minimizing the area of the contour by

varying SI, within the uncertain y limits can further im-

prove the c accuracy.

V. CONCLUSIONS

The analytical approach to computing c from reflection

and/or transmission coefficients as derived in Section II

has the advantage that the programming is simple and can

be performed within a negligible computing time in the

minicomputer which is part of the automatic and calibrated

network analyzer. In Section III, the ~ uncertain y region is

related to the sample length uncertainty, and to the scatter-

ing coefficient uncertainties. For low-loss materials, accu-

rate t results are obtained by measuring S11 for long

sample lengths corresponding to an integer number times

half a wavelength in the medium, especially when a rectan-

gular waveguide near cutoff is used. However, the longer

the sample lengths are, the more sensitive the c computa-

tions are to failures in the model, For higher losses, the

influence of Szl becomes more important and both minima

of (22) and (23) have to be used to get the most accurate

results. Under the assumption of sufficient measurement

sensitivity, the method with the moving short has the

advantage that only reflection coefficients have to be mea-

sured. From these measurements, the scattering coefficients

and their uncertainties are derived. A variant makes use of

the relation between the scattering coefficients via the

measured reflection coefficients. The different c results

found in this manner yield comparable results and can be

analyzed statistically.
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